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GALERKIN EIGENVECTOR APPROXIMATIONS 

CHRISTOPHER BEATTIE 

ABSTRACT. How close are Galerkin eigenvectors to the best approximation 
available out of the trial subspace? Under a variety of conditions the Galerkin 
method gives an approximate eigenvector that approaches asymptotically the 
projection of the exact eigenvector onto the trial subspace-and this occurs 
more rapidly than the underlying rate of convergence of the approximate eigen- 
vectors. Both orthogonal-Galerkin and Petrov-Galerkin methods are consid- 
ered here with a special emphasis on nonselfadjoint problems, thus extending 
earlier studies by Chatelin, Babu?ka and Osborn, and Knyazev. Consequences 
for the numerical treatment of elliptic PDEs discretized either with finite ele- 
ment methods or with spectral methods are discussed. New lower bounds to 
the sep of a pair of operators are developed as well. 

1. INTRODUCTION 

Consider the eigenvalue problem for a linear operator A: 

Find A E C and vb 4 0 so that 

We seek a family of approximations {Ah, Vh}h>O to the eigenpair {A, v} using the 
Galerkin method. 

The Galerkin method approximates the operator A with a finite rank operator, 
Ah-the "projection" of A, that samples the action of A on a given subspace. The 
solution to (1.1) is then approximated with a matrix eigenvalue problem associated 
with Ah. 

This work focuses on one particular bit of Galerkin folklore-"the Galerkin 
method yields an approximate eigenvector for A that is essentially the projection 
of the exact eigenvector v onto the trial subspace" (see Figure 1). We discover that 
this statement is correct under some mild conditions if 1) "essentially" is taken to 
mean "asymptotically," and 2) the projection involved is intrinsic to the Galerkin 
method and may be either orthogonal or oblique depending on how the discretiza- 
tion is organized and what point of view is taken. Results of this nature have 
been found for self-adjoint operators by Chatelin [3], Babuska and Osborn [2], and 
Knyazev [10] in various settings. Although more generality is possible, we restrict 
ourselves to a Hilbert space setting-specific assumptions are found in Section 2. 
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FIGURE 1. How close is the approximate eigenvector OhtO the pro- 
jected exact eigenvector Phvi? 

The basic features of Galerkin methods that play a role in our analysis are 
reviewed in Section 3. Of particular note here is that discussion is not restricted 
to self-adjoint problems. Section 4 provides analysis for the simplest case-when A 
is a bounded operator. The case where A is an unbounded operator is considered 
from two vantage points in the next two sections: with respect to the "energy" 
norm in Section 5 where a discussion of consequences for the finite element method 
on elliptic problems may be found; and with respect to the underlying Hilbert space 
norm in Section 6 where an elliptic- problem discretized using a spectral method is 
discussed. The Appendix contains a development of new lower bounds to the sep 
of a pair of operators, which plays a role in derivations in the main body of the 
paper but may also be of independent interest. 

2. SETTING OF THE PROBLEM 

2.1. Operators defined via quadratic forms. Although eigenvalue problems 
are most naturally posed for linear operators, the operators themselves are often 
difficult to specify fully-particularly with regard to the operator's precise domain 
of definition. It is often easier to characterize an operator in terms of a quadratic 
form that is naturally associated with it. This approach usually leads spontaneously 
to the appropriate choice of underlying Hilbert spaces. The reader may refer to the 
excellent tract of Kato [9] for background material on quadratic forms. 

Let Al be a complex separable Hilbert space with inner product1 and norm 
denoted by ( * , . ), and 11 I,, respectively. Let a(., -) be a closed sectorial 
sesquilinear form, densely defined in 'H. "Sectorial" means that 

(2.1) I~m ~Re a(v,v) > aIllvII, 
IQm a(v, v) I < M(3Re a(v, v) -olIvII) 

for all v E Dom(a) and some fixed a > 0 and M > 0. Following the notation of 
Kato [9], define symmetric sesquilinear forms associated with a, 

2I.Re aD (w, v) =(a(w, v) + a(v 
[(m aJI(w,v) = 2j(a(w, v) -a(v w)) 

nner products and sesquilinear forms are conjugate linear in the first argument. 
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so that a(w,v)= 5Re aD (w, v) + ' z5?m aD (w,v). Notice that (2.1) implies 

CelIVII2 < ,Re_ aD (v, v) < I a(v, v) I < 5l+RM~~ e aD (v, v), 
so 5Re aD is a closed, symmetric, positive-definite, sesquilinear form that induces 
an inner product on Dom(a) with respect to which Dom(a) is a Hilbert space. 
a(u, v) is then a bounded sesquilinear form on this Hilbert space. Furthermore, 
there is a closed operator, Ca, densely defined on X so that Dom(Ca)= Dom(a) 
and 5Re aD (v, v) = IICaVII2 (cf. [9], p. 331). 

Suppose now that V = Dom(a) is equipped with an inner product ( )v 
equivalent to 5Re aD. The Hilbert space V is continuously and densely imbedded in 
XH and we may assume without loss of generality that Ilull- < llullv for all u E V. 

Observe that any X-bounded linear functional on 'H may be viewed immediately 
as the extension of some V-bounded linear functional on V, so letting V' denote the 
dual space of V, the imbedding V X-* 'H may be extended to a Gelfand triple (see 
e.g., [13]) V X-* 'H -* V' with the norm on V' defined by 

lvl = supI 
1vH 

111 wEV llwl v 

The Cauchy-Schwartz inequality yields llvllv, < IIvIIH for all v E 'H. 

Under the hypotheses given, Kato's first representation theorem ([9], p. 322) 
guarantees the existence of a closed m-sectorial operator, A, defined on 

(2.3) Dom(A) = {v E V I la(w, v)I < m,IIwIIe for all w E Dom(a)} 

where m, is independent of w but will generally depend on v. Then 

a(u,v) = (u,Av)4 

for all v E Dom(A) and u E V. Furthermore, there is a closed operator Ba with 
Dom(Ba) = Dom(Ca) = Dom(a), so that A may be decomposed as A = B*Ca 
(see e.g., [9] p. 337). "*" denotes the X-adjoint. 

Since Dom(A) is dense in V (with respect to the V-norm) and 

Ia(u,v)I < clluIv,llVllvl 

we may calculate for any v E Dom(A) 

IlAvllv' = SUp (u )< cvlv. 

Thus A may be extended by continuity to a bounded linear transformation from V 
to V'. To avoid adding a further notational burden on the reader, the two available 
interpretations of A, as an (unbounded) operator from Dom(A) C 'H -X 'H and as 
an operator from V to V', will be distinguished only by the context in which they 
appear. "Dom(A)" will always refer to the definition given in (2.3). Note that 

I = supa(U,v) I I a(v,v) ,Re a (v,v) 
IlAll 

CV 
SU - 

-> >~ 

thus A (now extended to V) is an isomorphism of V onto V' with a bounded inverse, 
T = A1 mapping V' back to V. T may be defined alternatively for each v E VI 
so that Tv E V solves 

(2.4) (u, v), = a(u, Tv) 

for all u E V. A maps vectors in Dom(A) to H, whereas T maps vectors in 'H C V' 
back to Dom(A) C V. 
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2.2. The gap. Given two closed subspaces, M and K of X, the proximity of one 
to the other is measured in terms of the containment gap (or just gap2), which we 
define as 

6H(M,KM) = sup inf Yl - 11 = sin(emax(MK )). 
xCM YEA( 11x1K 

emax (M JV) is the largest canonical angle between M and a "closest" subspace K 
of K isomorphic to dimM. Notice that if dim JK < dimM, then 6,(M,JK) = 1 

and 6,(M,KM) = 0 if and only if M C JK. If dimKJV = dimM < oo, then 
5, (M, I) = 5J (K, M). Conversely, if both 6,(M, K) < 1 and 6(K\(, M) < 1, 
then (M, KJV) = 5H (JK, M) and JK and M are isomorphic. 

The gap can be expressed directly as the norm of a composition of projections, so 
that if H1M and Hg denote XH-orthogonal projections onto M and K, respectively, 
then 6-,(M, K) = II (I - Ilv)IHIm L. 

If M and K are closed subspaces of V, we have the completely analogous defi- 
nition of gap relative to V: 

6v(M,J)= sup inf lYX 
- 

xlv 
xCM YCA/V lll 

If A and B are closed operators in XH the gap between A and B is defined as the 
gap between their graphs, considered as subspaces of XH x XH: 

6 (Al B) = sup inf ll Xll + IIAxll - 
xCDom(A) yCDom(B) ~~ A~ 

2.3. The eigenvalue problem. Our focus rests on the (weakly posed) eigenvalue 
problem for a: 

(2.5) Find A and 0 
4 

vE Dom(a) so that 
a(w,iv) = A(w,ib), for all w E Dom(a). 

Note that {A, v} is an eigenpair for (2.5) if and only if v E Dom(A) and {A, v} 
is an eigenpair for the operator A; or equivalently when A 74 0, if {A-', v} is an 
eigenpair for the operator T. 

Denote the resolvent set of A by 

p(A) = {z E C z - A has a bounded inverse on X} 

and the spectrum of A by a(A) = C\p(A). A is an isolated eigenvalue of (2.5) 
if there is a neighborhood of A, call it Q(A), so that Q(A) n a(A)- contains only 
the point {A} (i.e., A is an isolated eigenvalue of the associated operator A). If 
A is an isolated nonzero eigenvalue of (2.5) then Ker[A - AI] is the associated 
eigenspace. U = U%11 Ker[(A - AI)k] similarly will be the invariant subspace for 
(2.5) associated with A. No compactness assumptions have been made for either A 
or T, so a priori it may happen that (2.5) has no eigenvalues at all or those that 
it has may be embedded in essential spectrum (defined with respect to A) and not 
isolated. A has finite multiplicity m if dim U = m < oo. If A has finite multiplicity, 
then there is a finite integer, r < m for which Ker[(A - AI)'] = Ker[(A - AI)r+']. 
The smallest such integer is called the ascent of A. 

2Kato [9] defines the gap as max[5H(M,JK), J-H(JA,M)]. 
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Furthermore, if A is an isolated eigenvalue with finite multiplicity, then for 
each k = 1, 2, ..., (A - A)k is a FRedholm operator with zero index implying 
nullity(A - A)k = nullity(A* - A)k for each k (cf. [9], p. 239). In particular, A is 
an eigenvalue of A* with the same multiplicity and ascent as A. A "left eigenvector" 
associated with such a A E a(A) may be characterized variationally as 

(2.6) Find 0 74 u* E Dom(a) so that 
a(u*,v) = A(u*,v), for all v E Dom(a). 

Note that u* is a solution for (2.6) if and only if u* E Dom(A*) and {A, u*} is an 
eigenpair for the operator A*. 

Henceforth we will assume that there is an isolated eigenvalue A 74 0 for (2.5) 
having finite multiplicity m with an associated maximal invariant subspace U for 
which we seek approximations. We denote with U* the maximal invariant subspace 
for A* associated with A. 

The spectral projection for A onto U is defined by the Dunford integral 

E= (zJ(-A)ldz, 2irz ' 

where r is a circle in C centered at A leaving the origin and all points of a(A) 
other than A in its exterior. The complementary A-invariant subspace is denoted 

Uc = Ran(I-E). 
Notice that ,u = 1/A will be an isolated eigenvalue of T also with multiplicity m 

and the same m-dimensional invariant subspace U as for A. The spectral projection 

may be defined with respect to T as 

if 
E= (z - -T)dz, 2irz J 

where E is a circle in C centered at ,u leaving the origin and all points of a(T) other 

than ,u in its exterior. 

3. THE GALERKIN METHOD 

3.1. Discretization. In order to approximate the eigenvalue A and its associated 

invariant subspace U, we introduce two parameterized families of finite dimen- 

sional subspaces Sl,h C V and S2,h C V-the trial and test subspaces, re,pectively. 
def 

Assume that dim Sl,h = dim S2,h d= N(h). Typically, the dimension N(h) is mono- 
tone increasing as the "mesh size" parameter h decreases. 

The Galerkin method proceeds by solving an eigenvalue problem as in (2.5) for 

the form a restricted to the finite dimensional space S2,h X S1,h: 

Find Ah and 0 4 Vh E S1,h so that 

(3.1) a(u,vVh) = Ah(U,Vh)4 
for all u E S2,h. 

The name is sometimes further qualified as either an orthogonal-Galerkin method 

or a Petrov-Galerkin method depending on whether Sl,h = S2,h or not. When A is 

self-adjoint and Sl,h = S2,h, this approach is called the Rayleigh-Ritz method. 

For any given h, the computational realization proceeds by fixing bases for Sl,h 
as ?b1, 02, ..., qON(h), and for S2,h as b1, 02, ***, bN(h). The problem (3. 1) is 
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then reduced to resolving the generalized matrix eigenvalue problem 

(3.2) Ahy =AhBhy 

where Ah = [a(V)i, 4j)] E (CN(h)XN(h) 

and Bh = [(0i, Oj)x] E ?CN(h)xN(h) 

If an eigenvector y of (3.2) has components yt = {Y1, Y2, .., YN(h)}, then the 

corresponding Vh that solves (3.1) is represented as Vh = YL j YOjc. 
For any T E C, define TT = T+r, which may be defined variationally by analogy 

to (2.4) as that operator that satisfies 

(3.3) (U, v), + ra(u, v) = a(u, TTv) 

for all u, v E V. Notice that {A, u} is an eigenpair for (2.5) if and only if 
{ (A-1 + T), u} is an eigenpair for the operator TT and more generally, a(TT) = 

a(T) + T. T and TT have the same invariant subspaces U associated with each of 
the eigenvalues A1 and A-1 + T, respectively. The effect of a translation of a(T) 
by T produces (from (3.3)) a discrete problem with translated spectrum. Instead 
of (3.2), we have 

(3.4) AhY = Ah(Bh + rAh)y. 

The approximate spectra produced by (3.2) and (3.4) are related as = A- + T 

but eigenvectors and invariant subspaces are identical. Since our principal interest is 
in eigenvector approximations, choices for T are immaterial, and particular choices 
will entail no loss of generality. 

Assume that the following "discrete inf-sup" conditions are satisfied: 
def 

(3.5) inf sup ja(u,v)j d /3(h) > 0, 
ZUES2,h VES1,h 
IIUIIV=l IIvIIV= 

and 

(3.6) inf sup I(u,v)iH d f 3(h) > 0. 
UES2,h VES1,h 

Jj,,1X1lVjjH =1 

Since dimSl,h = dimS2,h = N(h), these are equivalent to the complementary 
conditions, 

(3.7) inf sup la(u,v)l =3(h) > O 
VES1,h UES2,h 
IIvIIV=l IIUIIV=l 

and 
0 

(3.8) inf sup (u,v) =/3(h) > 0, 
VECS1,h UES2,h 
llv,,-=l 11U11-H= 

respectively. Condition (3.5) is the usual discrete inf-sup condition (cf. [1]) and 
guarantees that Ah is invertible for each h. Analogously condition (3.6) guarantees 
that Bh is invertible for each h. Either (3.5) or (3.6) will guarantee that the discrete 
eigenvalue problem (3.2) is well posed and associated with a regular matrix pencil 
for each h > 0. 
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3.2. Projections. Define Ph: V -* Sl,h as Phv = Z _h) a(0j,v)ij0i where 

[ij] = A-'. Direct calculation verifies Ph2 = Ph, hence Ph is a projection, albeit 
nonorthogonal typically. Ph maps each v E V to a unique vector, wO = Phv in Sl,h 
that solves 

(3 9) Find wO E S1,h so that 
(39 ) a(u,v-w)= 0 foralluES2,h. 

Ph arises spontaneously in discussing solutions to boundary value problems associ- 
ated with a. For any given f E 'H, the weakly posed boundary value problem 

Find v E V so that 
a(w,iv) = (w, f) for all w E V 

admits a solution b which may be approximated with a Galerkin method 

Find Vh E S1,h so that 
a(w, bh) = (w, f4H for all w E S2,h. 

Exact and approximate solutions are related via Ph as 'vh = PhD. 

Along the same lines as above, define Pha as PIZu = ,N= a(u, Oi)yij j- Ph is 
a projection onto S2,h defined on V and wO = Phau solves, for any u V, 

(3.10) 
Find wO E S2,h so that 

(3.10) a(u-w ,v)=0 forallvESl,h. 

Notice that (3.9) and (3.10) together imply for all u, v E V, 

a(u, Phv) = a(Phau, Phv) = a(Phau, v). 

That is, Pha is the "a-adjoint" of Ph. 

Now, for all u E S2,h and all v E S1,h, 

(U) V)4 = (Phau PhV) 

= a(Ph U, TPhv) 

= a(u, PhTPhv), 

so we have that Ah 74 0 and Vh together solve (3.1) if and only if A-' and vh 
def 

constitute an eigenpair for Th = PhTPh. 
From (3.7), we find for any v C V with IlPhvllv 74 0, 

0<fl(h)? su a(u, Phv)~ I Ja(u, v) I 
O < 3 

(h) < seup =a 
s 
uE2hPh' UCS2,h I|PhVllV UtCS2h I|PhVV 

IIUIIV=l IIUIIV=4 

< sup ?illvlu-v < l HVl 
ULCS2,h IlPhVllV C IlPhvVIV 
IIUIIV=l 

Thus, 

(3.11) IlPhllv < ci/l3(h). 

Similarly from (3.6), IlPhallv < cil/,(h). The following result leads us to conclude 
that both II - PhIv < cl/f,(h) and II - PhaIv < cl/,B(h) as well. 
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Lemma 3.1. If Z is a bounded (nonorthogonal) projection on a Hilbert space W 
such that Z 54 I and Z 54 0, then III - Zllw = IIZIIvv. Furthermore, if II denotes 
the W-orthogonal projection onto Ran(Z), 

(3.12) 1I Z ll 11 (I - Z)uIIw < II (I - I)Fll)uw < (I - Z)uw.IW 

Proof. The first assertion was proved by Kato ([8], p. 28). Since (I - Z) = 
(I - Z)(I - H), II(I - Z)uIw < I(I - Z)IwI(I - I1)uJvw which then gives the 
first inequality of (3.12). The second inequality of (3.12) is the best approximation 
property of orthogonal projections. C1 

Hl,h and 12,h will always denote orthogonal projections onto Sl,h and S2,h re- 
spectively. However, depending on the context, they will be considered either or- 
thogonal in XH or orthogonal in V with no distinction in notation. 

Define Qh X( -* Sl, h as Qhv= Eij=h where [aj]= Bh* Qh has 
a natural extension to v E V' so the composition of operators AQh :V' )V' and 
QhAQh :V' -* Sl,h are each well defined. Since Q2h = Qh, Qh is also a projection, 
but is 'H-orthogonal if and only if Sl,h = S2,h- Qh maps each v eE 'H to a unique 
vector, wo = Qhv in Sl,h that solves 

(3.13) Find wo E Sl,h so that (3.13) ~U) WO(u,v- )7 = O for all u E S2,h. 

Evidently, the X--adjoint Q* 'H -* S2,h has the form Q`U = EN=1(q$,U)7 
Q* is a projection onto S2,h and solves, for any u E 'H, 

(3.14) Find wO E S2,h so that 

((u-uW,v),=O forallvESl,h. 

Now, for all u E S2,h and all v E S1,h, 

a(u, v) = a(Q*u, Qhv) 

-(Qhu, AQhV)H 

= (U, QhAQhV)H ' 

so we have that Ah # 0 and vh together solve (3.1) if and only if Ah and Vh constitute 
def 

an eigenpair for Ah QhAQh. 

3.3. Convergence. Convergence criteria may be framed either in V or in X. Con- 
vergence criteria in V appear as 

(3.15) lim/3(h)1 inf llv-wllv = O for each v E V, 
h--+O WES1,h 

and 

(3.16) lim 6v(Th,T) = 0, 
h--+O 

Theorem 3.2 (Descloux, et al. [4, 5]). The hypotheses (3.15) and (3.16) imply: 
1. Both Ph -) I and Pha -* I strongly in V; Ph is uniformly V-bounded with 

respect to h; and there is a constant c > 0 so that 

6v(Th, T) <? (I - Ph)TPhHV < c6v(Th) T). 
2. For each compact subset, 1Z, of p(T) there exists ho > 0 and K > 0 so that 

IZ C p(Th) and l(z - Th)-1 Iv < K uniformly for z E IZ for all h < ho. 
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3. If ,u is an eigenvalue of T with algebraic multiplicity m and with an associated 
m-dimensional invariant subspace U, there will be m eigenvalues (counting 
multiplicity) of Th, {,4, ,42, .. ., ml } that are convergent to ,u as h -* 0 and 
the associated m-dimensional Th-invariant subspace Uh satisfies 6(U, Uh) -O 0 
as h -* 0. 

If Z is a circle in C centered at ,L leaving the origin and all points of a(T) other 
than ,L in its exterior, then under the convergence assumptions (3.15) and (3.16), 
there will be m eigenvalues of Th, labeled as IL, /2, ..., ,IL, that will all be 
contained in the interior of Z for sufficiently small h. Thus for sufficiently small h, 
the Dunford integral 

Eh= j X(--Th) dz 

defines a spectral projection onto the Th-invariant subspace Uh associated with 
1 2 m 

Ih) ' ..h . ' h 
Analogous convergence criteria in 'H appear as 

(3.17) lim/3(h)1 inf llv-wwll = O for each v E -, 
h--+O WES1,h 

and 

(3.18) lim 6 (Ah, A) = 0, 
h--+O 

with similar consequences: 

Theorem 3.3 (Descloux, et al. [4, 5]). The hypotheses (3.17) and (3.18) imply: 

1. Both Qh -- I and Q* -* I strongly in 'H; Qh is uniformly 1t-bounded with 
respect to h; and 

6 (Ah, A) ? |(I-Qh)AQh%11 

If A is bounded there is, in addition, a constant c > 0 so that 

I(I -Qh) AQhl c c6H (Ah, A). 

2. For each compact subset RZ of p(A), there exists ho > 0 and K > 0 so that 
1Z c p(Ah) and (z - Ah)1 < K uniformly for z E RZ for all h < ho. 

3. If A is an eigenvalue of A with algebraic multiplicity m and with an associated 
rn-dimensional invariant subspace U, there will be rn eigenvaluts (counting 
multiplicity) of Ah, {A7 Al) .A.., Am } that are convergent to A as h -0 and 
the associated m-dimensional Ah-invariant subspace Uh satisfies 6H (U, Uh) ) 
0 as h -* 0. 

If F is a circle in C centered at A leaving the origin and all points of C(A) other 
than A in its exterior, then under the convergence assumptions (3.17) and (3.18), 
there will be m eigenvalues of Ah, labeled as Al, Ah, ..., Am, that will all be 
contained in the interior of F for sufficiently small h. Thus for sufficiently small h, 
the Dunford integral 

Eh= j X(--Ah) < dz 

defines a spectral projection for Ah onto the invariant subspace Uh associated with 
A1 A2 .Am h h h' 
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It will be convenient to label the complementary nonzero part of the spec- 
trum of Th and Ah as JC(Th) = J(Th)\{O, I4L I4, 7. m} and ac(Ah) = 

a(Ah)\{O, ,Al A2, ...A }, respectively. 

Theorem 3.4 (Babuska and Osborn [1]). Suppose A is bounded and the hypothe- 
ses (3.17) and (3.18) hold. Then there is a constant c > 0 such that 

(3. 19) 6,R (U, Uh) < cA(h) - 1 j. (Uv I1 S,h) v 

~~o _ - l~~~~~/r 
(3.20) A - Ah < c [N(h) -16(U*,S2,h) 6j(U Sl,h) 

where r is the ascent of the eigenvalue A. 

These appear as Theorems 8.1 and 8.3 in [1]. As stated there, the proofs given 
in [1] presume that A is compact; however, the arguments extend without change 
to A having nontrivial essential spectrum once the convergence results of [5] come 
into play. 

4. BOUNDED A-THE MAIN RESULTS 

4.1. Basic estimates. Define 

h JQhA(I - Qh)u|H 
(= sup J i1,h)U 

where Hl,h here is the NH-orthogonal projection onto Sl,h. 

Theorem 4.1. Suppose the convergence hypotheses (3.17) and (3.18) hold. There 
exists an ho > 0 sufficiently small so that for each h < ho and each u E U with 

JJuJJ, =1 , there is a Uh E Uh so that 

(4.1) IUh -QhUll-H 
? c?j(h) 6-H(U,Sl,h), 

where c > 0 is a constant independent of h and independent of the choice of u E U. 

Proof. Ran(Eh) C Sl,h since EhAh = AhEh. Note also that Qh is a spectral 
projection for Ah associated with all nonzero eigenvalues of Ah. Thus, Qh - Eh iS 

a spectral projection for Ah onto Uh associated with all nonzero eigenvalues of Ah 

distinct from A. Let A = Alu denote the restriction of A to U and Let Ay = AhIu- 

denote the restriction of Ah to Uh?. Then, Ac (Qh- Eh) = (Qh - Eh)Ah and we 
have 

Ac(Qh- Eh)|U -(Qh -Eh)|U A 

=(Qh- Eh)(Ah- A) ju 

= -(Qh Eh)((I - Qh)A + QhA(I - Qh)) jU 

= -(Qh - Eh)QhA(I - Qh) U 

= - (I - Eh)QhA(I - Qh) |U- 

Thus, the mapping S: U - Uh given by S = (Qh - Eh) jU is a solution to the 
Sylvester equation 
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There exists K1 > 0 such that 

II(z - A)-1 u 11 < II (z - A)-11,H < K1 

uniformly for all z E F. Likewise there exists an ho > 0 and K2 > 0 such that for 
h < ho, 

Z-Ach)1 lu- K1 < l(z - Ah)>111 < K2 

uniformly for z e F. Therefore, the pseudospectral sets AE(Ah) are contained in 
the exterior of F for any E < 1/K and for all h > ho. By Lemma A.1(b), there 
must then be a co > 0 independent of h, such that 

V1(Qh - Eh) |U ||U-U, < CO (I - Eh)QhA(I - Qh) IIU--tU- 

Thus, for any u E U, 

IQh - Eh)Ull <? Co II - Ehl l SUp IIQhA(I - Qh)WH||V 

? Co I E || sup H QhA(I - Qh)W V SUp 
II 

(I - l1,h)W||V 
WE III -Hl1,h)WIIK wc II' 

= Co IIEhIIeH (h)6H(U,Sl,h)- 

Notice that since Eh converges uniformly to E, IIEh KH is uniformly bounded. The 
conclusion follows upon assigning Uh = EhU. ? 

Corollary 4.2. Suppose the convergence hypotheses (3.17) and (3.18) hold and 
that S1,h = S2,h. Then 

(4.3) 6H (U, S1l,h) < 6 (U, Uh) < (1 + C ? (h)) 6 (UI Sl,h) . 

Proof. Note that under the hypotheses given, Qh = H1l,h = I2,h = Q*. The first 
inequality of (4.3) follows trivially from observing that Uh C S1,h. For the second, 
by Theorem 4.1 there exists an ho > 0 such that for each h < ho and u E U with 

= 1, there is a Uh E Uh such that IIQhuh- uh < c? e(h) 6(U, Sl,h). Then, 

min |U|-Uh| 1< | u-uh11H 
Uh EUh 

<? U - QhU%I1 + lQhU - UhII 

<6H (U, Sl , h ) + C ?a (h) 6,H (U, Sl, h) . 

Maximizing over u yields the conclusion. 

Corollary 4.2 can be interpretted as saying that, provided el (h) - 0, the or- 
thogonal Galerkin method provides optimal zero order approximations to the eigen- 
vectors of A: Uh will approach asymptotically the closest m-dimensional subspace 
in Sl,h to the exact eigenspace U-and this is true even if A is nonselfadjoint. See 
the comments following Theorem 5.4. 

4.2. Related estimates and interpretation. Since each Qh is a bounded pro- 
jection, 'H may be decomposed into a direct sum of complementary subspaces as 
'H = Ran(Qh) + Ker(Qh) = Sl,h + S#h The operator A can then be partitioned 
in a way that reflects this decomposition (see Figure 2). 
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Ah, I (1,h) 

A =XU=|i 

(I-Qh)AQh (I -Qh)A(I -Qh) 

FIGURE 2. Partitioning A and u E U on H= S1,h + S#h Shading 
indicates influence on E-H (h). 

For each generalized eigenvector, u E U, define U(l,h) Qhu and u(2,h) - 

(I - Qh)u. The quantity Ec (h) is then a measure of the relative size of QhA(I - Qh) 

on U(2,h). This follows from observing that from Lemma 3.1 

SUPIIQhA(I - Qh)uII) 

? 
IQ(h) 

? 
AQh sup hA(I - Qh)uI) 

uCU( 11I -Qh)uII ucu II(I Qh)uII 
which (provided Qh - I strongly) implies immediately 

||QhA(I - Qhu H)<K IQhA(I - Qhu(h) X 
sUp Hu2h~K <c(h) < c sup 

for some constant c > 0, where A/h = (I- Qh)U C S21. A/h is the span of all 

components U(2,h) of (generalized) eigenvectors u in U that lie in the direction of 

Ker(Qh). 

Certainly it may happen that Ec,(h) 74 0, so a variety of additional conditions 

will be examined in the next few sections that suffice to guarantee Ec,(h) -* 0. 

Perhaps the simplest of these is to require that the A* eventually converge to A* 

in gap: 

Theorem 4.3. There is a c > 0 such that E,(h) < c6A(A*, A*). 

Proof. Note that I- Qh = (I- Qh)(I- H1,h). Thus, 

EIQhA(I - Qh)UJIH 
Eh)sup 

- 
lhU 

? QhA(I - 
Qh)11H = V1(I -Q)A 1H 

< cH (A* IA*), 

using Part 1 of Theorem 3.3. a 

We should not expect to do much better than the bound provided by (4.1). The 

bound has the "right" asymptotic behaviour in many cases and so in that sense 

will be best possible. 
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Theorem 4.4. Suppose that A is a simple eigenvalue of A with an associated eigen- 
vector u. There exist constants co, c1 > 0 (independent of h) so that for each h one 
may find a Galerkin eigenvector Uh with 

(4.4) coIUh - QhUJx < I?QhA(I - Qh)u <? cluh - QhullH + A - Ahl IJUhIJ 

Furthermore there exists a C2 > 0 independent of h so that 

(4.5) 
IlUh - QhUJJK ? cIh ?c Uh - QhUJJK + c/(0 )( 

C 
| (I- l,h)U IIK - X (h) -C1 I - ) 1 1 + (C2,B(h)-1)11 (I-H2 h) 

U 

where u* is a "left eigenvector" satisfying (2.6). 

Proof. The first inequalities in each of (4.4) and (4.5) are a consequence of Theorem 
4.1. Since A is simple, Au = Au and for h > 0 sufficiently small, rank(Eh) = 1 and 
Ah will be simple. 

HJQhA(I -Qh)u||a < I(I -Eh)QhA(I -Qh)uIIH + JJEhQhA(I -Qh)uJI 

? EI(AS - SA)uJJa + IlEhAu -EhAhu 
' 

J?Ar-JJH + JAS) uJS + |AEhu -AhEhUI|| 

? (I|Ahlla + AI) |Sull-H + I(A - Ah)EhUI1| 

I AIIH (1 + lQh11) IEhU - QhUllH + A - AhllEhUlH 

where S = (Qh- Eh) |U satisfies the Sylvester equation (4.2). Then (4.4) follows 
upon assigning Uh = Ehu and observing that Qh is uniformly bounded in 'H. 

To show (4.5), note that the ascent of A is 1, so from (3.20) there is a c2 with 

A - Ahl < c223(h) 11(I - 2,h)U*|1-j|(I -Hh)UI| 

so 

(h)= JJQhA(I -Qh)uII-H 
Ex - 

~II(I - I-1h)UII-H 

< ClU - QhU K + (C2//3(h) II(I- 12,h)U* 11- 

5. UNBOUNDED A-ESTIMATES IN V 

5.1. Basic results. The setting considered in this section is the traditional one 
encountered in the analysis of finite element methods. With few exceptions, much 
of the structure of arguments of Section 4 carry over into this setting. 

Define 

EV(h) = sup JHPhT(I - Ph)uIv 

where Hl,h now is the V-orthogonal projection onto Sl,h- 

Theorem 5.1. Suppose the convergence hypotheses (3.15)-(3.16) hold. There ex- 
ists an ho > 0 sufficiently small so that for each h < ho and all u E U, there is a 
Uh E Uh so that 

(5.1) IUh - PhUlIV < cEv(h) 6V(U, S1,h), 
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where c > 0 is a constant independent of h and independent of the choice of u E U. 

The proof is the same as for Theorem 4.1 formulated in the Hilbert space V 
instead of 7H and with T, Th, and Ph playing the roles of A, Ah, and Qh, respectively. 

Lemma 5.2. Suppose the convergence hypotheses (3.15)-(3.16) hold. If V is com- 
pactly imbedded in lt (so that T is compact as a mapping from V to itself) and if 
S2,h satisfies the approximation property 

(5.2) lim,3(h)l inf llv-wwlv = 0 for each v E V, 
h-*O WES2,h 

then EV(h) -* 0as h -* 0. 

Proof. Since a is bounded and coercive on V, there is a bounded and invertible 
linear operator on V, A, such that a(u, v) = (u, Av)V. Let "*" denote the V-adjoint 
and observe that Phju = Zfj=l($i, u)vaiA*oj, so that, in particular, Ran(Phj) = 

A*S2,h. Let H2,h denote the V-orthogonal projection onto S2,h and notice that 
A*H2,hA-* is a projection (no longer orthogonal, in general) onto Ran(Ph*). Then 
for any u E V, (5.2) implies 

-|(I Ph)UIIV = (I - PhW(I - A*2,hA *)uIV 
= ||(I - Ph[)A*(I - H2,h)A ullv 

< |II- PhI|IVIIA*IVII(I -1H2,h)A*uIIv 

< _(h) - H(I-12,h)A*uIIv 

c 
-/()intf IIA4*u -wlv -+0, p(h)WCS2,h 

for some constant c. Thus, Ph* converges strongly to I in V. Since T* is compact, 
- (I-Ph*)T* |V -' 0 and 

h)1= sup IPhT(I - Ph)(I - H11,h)u 1v 
ucu( VII - IHl,h)uIiv 

< ||PhT(I -Ph) llv 

= |(I-Ph*)T*Ph 11V 
< ||(I - Ph )T0l.vlPhllv 

Even when T is not compact, additional conditions on S2,h can yield the same 
result: 

Lemma 5.3. Let T* denote the lt-adjoint of T. Suppose the convergence hypothe- 
ses (3.15)-(3.16) hold. If S2,h satisfies the approximation properties 

(5.3) limfl(h)1 inf llv-wllv =0 for each v E V, 
h-*O WCS2,h 

and 

def 
(5.4) sup inf IIT*v-wllv = -f(h) --0 as h 0. 

VCS2,h WES2,h ' 
h a ahV=l 

Then cv(h) -O as h -* 0 and cv(h) = O(-y(h)). 
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Proof. We first verify that T* maps V to V. For any u E 'H, v E Dom(a), 
I(u, v)_ < 1 

Ilull-H ICavIIH. (Recall Ba and Ca were defined in Section 2.) Thus, 
for u E Dom(a), w E Ran(CalDom(A)), (so that w = Cav for some v C Dom(A)), 
one may observe 

(T*u, Bw),j = I(T*u, B*CaV)1yl 

= (T*u, Av),I 

< a H.lwI 

Since Dom(A) is a core for CaI Ran(CalDom(A)) is dense in 'H and as a consequence 
T*u E Dom(B**) = Dom(Ba) = Dom(a). For u E Dom(a), v E Dom(A), then 

(5.5) a(Tau, (u,Tv) =(u, v)x 

=(u, TAv) 

=(T*u, Av), = a(T*u,v) 

(the last equality being a consequence of T*u E Dom(a)), and so, Ta = T*. 
Since 11 * KIV and jReaja are equivalent norms on V, there is an m > 0 so that 

mIJu Iv < ?a(u,u)I and 

mIlPhT(I - Ph)vIIV < la(PhT(I - Ph)v, PhT(I - Ph)V)| 
IIPhT(I - Ph)vIIv 

< sup Ia(u, PhT(I-Ph)V) 
ucv 

IIUIIV=l < sup a((I -vPha)T*Phaul v) 
ucv 

IIUIIV=l 

= csu i , lv 11 H(I - P ha)T*PhauIv I 

Thus, Ev(h) < IIPhT(I - Ph)IIV < (ci/m)II(I - Pha)T*PhaIIV. Now, notice that 

Ran(Pha) =S2,h, soI - Pha = (I - Pha)(I - H2,h), where 2,h iS the V-orthogonal 
projection onto S2,h. Now, 

- (I-Pha)T*Pha |V < ||(I - Ph)(I - 2,h)T 2,hPhalIV 

I -(I -Pha)IV IIPhaIIVII(I - I2,h)T*H2,h lV 

a) 
alIV sup 

Winf, 

IT*v -wllv 
= II(,-Ph IVIIph 

lVES2,h WES2||TV-hV 

< c-(h) -0. 

If a is symmetric (so that jRe aD = a and lQvm aD = 0) and if a(., *) itself is used 
as the inner product for V, then T is a self-adjoint operator in V. If additionally 
Sl,h = S2,h, then Ph is a V-orthogonal projection and Th is then also self-adjoint. 
In this circumstance, Uh is asymptotically the closest vector out of Sl,h to u (with 
respect to the a-norm on V): 
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Theorem 5.4. Suppose a is symmetric, a(u,v) = (u, v).V, and that SI,h = S2,h* 
Then 

(5.6) Ev (h) < c1 6v (Th, T) 

and 

(5.7) 1< 6 (U ,h) < 1 + c2 6V(Th, T). 

Proof. Note that under the hypotheses given, Ph = 11,h = 12,h = Ph. Thus, 

cv(h) sup L'11hT(I - I,h)uv 
< -IHl,h)UHIv 

= |(Il-hI1,h)TI1,h1v 

< c,6v (Th IT). 

The first inequality of (5.7) follows trivially from observing that Uh C S1,h. For the 
second, by Theorem 5.1 there exists an ho > 0 such that for each h < ho and u E U 
with IIu = 1, there is a 'Uh C Uh such that IIPhU - UhV < cEv(h) 6V(U,S1,h). 
Then, 

min U - UhlIV < I1U -'UhllV 
Uh CUh 

* U - PhU IV + I1PhUd - iihlIV 

< 6V (U, S1,h) + c Ev (h) 6V (U, SI,h)- 

Maximizing over u yields the conclusion. a 

Theorem 5.4 was essentially given by Chatelin [3], refined by Babuska and Osborn 
[1]-each for compact self-adjoint T. Recently, a more general result of this sort 
allowing for noncompact self-adjoint T was given by Knyazev [10]. 

5.2. Elliptic boundary value problems: Finite elements. Let Q be a bounded 
open subset of Rn with a boundary OQ that is at least Cr+1 , for some integer r > 0. 
Given real coefficient functions aij, bi, c E Cr (Q), consider the second order elliptic 
differential operator A defined by 

n n 

A(x, D)v = - E D3aij(x)Div + l bi(x)Div + c(x)v in Q 
i, j=1 i=1 

with v = 0 on &Q, and the related adjoint operator given by 
n n 

A*(x, D)u =- E Diaij(x)Dju -E Di (bi(x)u) + c(x)u in Q 
i, j=1 i=1 

with u = 0 on aQ. 
Suppose that A(x, D) is uniformly strongly elliptic. The associated bilinear form 

n nr 

a(w, v) = E Jaij(x)[Djw][D.v]dx + , w bj(x)[Djv]dx 

+ c(x) w v dx, 
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defined on Dom(a) = Ho (Q) is a closed sectorial bilinear form densely defined in 
-H = L2 (Q) and A is manifested as a densely defined m-sectorial operator on 'H 
which can be extended to a continuous bijection from V = Hol(Q) onto the dual 
space V' = H-1(Q). Here and elsewhere, HP(Q) denotes the completion of the 
vector space C' with respect to the norm 

11U11HP(Q) = E J ID%v12dx. 

I?l<p Q 
The associated seminorm is defined as 

I UIHP(Q)= E j Dcv 2dx. 

Results governing regularity of solutions to elliptic problems (e.g., [13] p. 328) 
guarantee, for any f E H-1 (Q), the weakly posed problem 

(5.8) a(w, v) =( f)L2(Q) for all w E Ho' (Q) 

has a solution v C Hr+l (Q)n HO1(Q) Since T is a closed mapping from Hr-l (Q) to 
Hr+l(Q), there exists a constant c > 0 such that JjTfjjHr+1(Q) < cllf IIHr-1 (Q) for 
all f C Hr-i(Q). Furthermore, if U denotes an invariant subspace of A associated 
with an isolated eigenvalue of A with finite multiplicity then U C H'+1 (Q). 

Likewise the adjoint problem, 

(5.9) a(u,w) = (wg9)L2(Q) for all w C H1(Q) 

has a solution u C Hr+l(Q) for any g C Hr-l(Q). So, in particular, if g C V C 
H1(Q), then T*g = (A*)-lg C H (Q). 

Apply the Galerkin method with Sh = Sl,h = S2,h chosen to be a family of finite 
dimensional subspaces of V, so that for all integers 0 < k < r and some fixed c > 0, 
u z Hr+l(Q) implies 

(5.10) inf IIU - VIIH1(Q) ?ch llHk+l( 
VC-Sh UHlQ) 

For example, Co-finite element spaces constructed from piecewise polynomials of 
degree at least r would satisfy this condition. 

The discrete inf-sup condition (3.5) is satisfied with p3(h) = a > 0. Thus, the 
convergence conidition (3.15) is immediately satisfied. It remains to verify that 
(3.16) holds. Note that for every x C Sh = Dom(Th), Tx C H3(Q) and 

inf x - YIIH'(Q) + |IThX 
- 

TyIIH1(Q) < IThX - 
TxIIH1(Q) 

yeHl(Q) |IXIIH1(Q) + 11ThX11H1(Q) -IXIIH1(Q) + 11ThX||H1(Q) 

jj(1-Ph)Tx11H1(Q) 

||X||H1(Q) + 11Thx11H1(Q) 

c h2I Tx IH3 (Q) 

-IXIIH1(Q) + 11ThX11H1(Q) 

ch 2 IIXIIH1(Q) 
< 

IX||H1(Q) + I1Thx11H1(Q) 

< c h2. 

Thus, limh,o 6v(Th, T) = 0. 
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Although Theorem 5.2 is applicable, Theorem 5.3 will yield a concrete rate once 
we estimate 

y(h) =sup inf 11T*v-wllv. 
VESh WESh 

IIvIIV=l 

For any v C Sh, T*v C H3(Q) and so 

inf IIT*v-wllv = ll(I-Ih)T*vllv 
WESh 

< ch2 T*v1 3(Q) 
< ch 2 IVIIH1(0) . 

Thus, -y(h) < ch2. 
Since U C Hr+l(Q), 

6V(U,Sh)= SUp inf VIY 
- 

= H 11(I Ih)XI|V 

< chr IIH (l) 
< chr. 

Theorem 5.1 asserts that there exists an ho > 0 sufficiently small so that for each 
h < ho and all u C U, there is a uh C Uh so that 

IUh - PhUlV < Chr+2, 

whereas uh - ullv and lu - Phullv will each be only of order h' typically. 

6. UNBOUNDED A-ESTIMATES IN 'H 

6.1. Basic results. In the V-setting explored in Section 5, orthogonality of Ph 
and the related best approximation property in V could be developed only for 
self-adjoint A. In contrast, estimates in XH such as were found in Section 4 have 
particular appeal since whenever Sl,h = S2,h, Qh will be an orthogonal projection 
in XH, notwithstanding asymmetry in a and nonselfadjointness of A. Unfortunately, 
those estimates obtained in Section 4 depend fundamentally on the boundedness of 
A. In particular, if A is unbounded then Ec,(h) might not be uniformly bounded 
in h, much less go to zero. 

We define an expression that plays a role analogous to that of c, (h) in Section 
4: 

(6.1) Ej(h) 
- sup P - Qh)uJK 

uCU( VI- 1,h)uII-j' 

where H1,h here is once again the 7--orthogonal projection onto Sl,h- 

Theorem 6.1. Suppose the convergence hypotheses (3.17) and (3.18) hold. There 
exists an ho > 0 sufficiently small so that for each h < ho and all u C U, there is a 
Uh C Uh so that 

(6.2) Uh - QhUI1 < c j(h) 3x(U,S1,h), 

where c > 0 is a constant independent of h and independent of the choice of u E U. 
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Proof. Since EhAh = AhEh, Ran(Eh) C Sl,h Note also that Qhis a spectral 
projection for Ah associated with all nonzero eigenvalues of Ah. Thus, Q h- Eh 
is a spectral projection for Ah onto Uh. Let A = Alu denote the restriction 
of A to U and Let A h = Ahuh, denote the restriction of Ah to Uh. Then, 

Ach(Qh- Eh) = (Qh- Eh)Ah and we have 

Ah(Qh-Eh)KU -(Qh-Eh) KUA =(Qh-Eh)(Ah- A) |u 
- -(Qh - Eh)((I - Qh)A + QhA(I -Qh)) U 

- -(Qh - Eh)QhA(I - Qh) U 

- -(I - Eh)QhA(I - Qh) U 

Now premultiply by Th and postmultiply by T to find 

(Qh- Eh) |U T - Th(Qh- Eh) |u =-Th(I - Eh)QhA(I - Qh)T u 

(-(I-Eh)ThQhA(I-Qh)T Ku 
-(I - Eh) (ThQhAT-ThQhAQhT) ju 

(-(I-Eh)(ThQh-QhT) Ku 

-(I-Eh)(PhT-QhT) u. 

Thus, the mapping S U -* Uh, given by S = (Qh- Eh) U is a solution to the 
Sylvester equation 

Th'S-ST= (I-Eh)(Ph- Qh)TK. 

The goal now is to show that the bounds developed in the Appendix are appli- 
cable. There exists a K1 > 0 such that 

1(z- A)-1 u 11- < 1(z - A)-' 11 < K1 

uniformly for all z E F. Likewise there exists an ho > 0 and K2 > 0 such that for 
h < ho, 

||(Z- A)-l u,- I? < I(-zAh-A ||X <K2 

uniformly for z c F. Therefore, the pseudospectral sets AE (Ah) are contained in 
the exterior of F for any E < 1/K2 and for all h > ho. By Lemma A.l(b), there 
must then be a c > 0 independent of h, such that 

V|(Qh- Eh) |U IU,U- < c II - Eh)QhA(I -Qh) VU HuIuh. 

Thus, for any u C U, 

11 Qh E)UI- < CII -hI-HSU 
HQhA(I - Qh)WII- 

w eu | |W | |H 

? CH|| E || SUp HQhA(I-Qh)W W SUp I (I-HI 1,h)WH V 

WCU II(I-IH1,h)WIIK WCU( lwl- 

= cEh ll- EH (h) 3 - (U, S1,h). 

Since Eh converges uniformly to E, IIEhIIH is uniformly bounded. The conclusion 
follows upon assigning Uh = EhU. D 

When A is unbounded on 'H (so that V / 'H), IIPhIIH will not typically be 

uniformly bounded with respect to h. Estimating the rate at which E,(h) O-0 
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as h -* 0 becomes technically more demanding and additional hypotheses are hon- 
orably acquired. For the remainder of the section we assume that 

Sl,h = S2,h -Sh = spanpbl, 02, ***, kN(h)} 

and that 

The trial vectors 4i are eigenvectors of an auxiliary operator Ao. 

Theorem 6.2. Suppose that A is decomposable as A = Ao+B so that Ao is positive 
definite and self-adjoint on Dom(Ao) = Dom(A) and B* is bounded relative to Ao 
with relative AO-bound less than 1. Furthermore, assume that A is a nondefective 
eigenvalue of A. 

(1) If B* is relatively compact with respect to Ao, then E,(h) 0 as h 0. 
(2) If 

Suip inf HBvT~ ~ (h) --* 0, 
VeSh WCSh ||AoV ||K 

then Ex(h) - 0 as h - 0 and E,,(h) < Q(o(h)) as h -O0. 

Proof. Since B* has relative bound with respect to Ao smaller than 1, there is a 
r C zC so that IIB*(Ao-T)-11H_ = 1- r, < 1 for some r, > 0. It will be useful to 
translate the spectrum of A by r and write A - T = (Ao - r) + B. Referring to the 
discussion around (3.3), we absorb this shift in spectrum into both A and Ao, and 
assume without loss of generality that IIB*AU-111, = 1 - K < 1. Before continuing, 
we verify that the assumptions of (6.2) and (6.2) are preserved for any appropriate 
choice of r. First considering (6.2), if r is in the resolvent set for AO, then r-1 is 
in the resolvent set for AU1 and 

0~~~~ 
B*(Ao -T)1 = -B*AU-(Tl - 

T 

B*A-1 is compact, (T-1 - A-1)- is bounded, so B*(Ao -r)-1 is also compact 
and the assumption of (6.2) will be independent of any feasible shift r. Likewise 
for (6.2), there is an m > 0 so that for any v C Dom(Ao), II(Ao -r)vll > mHlvilH. 
Thus for any v E Dom(Ao), 

IlAovllH < II(Ao -T)vII + ITI Klvllx < (1 + )11)(Ao- )vIIV. 

If the assumption of (6.2) holds, then 

sup inf BvwH 
VCSh WESh 11 (Ao - T)v - m 

so the assumption of (6.2) is independent of the selected shift r. 
Now we prove (6.2) first. Write A = Ao(I + AU-1B) and observe then that 

ThQhA(I - Qh)Tu = PhTQhA(I - Qh)Tu 

- PhTAoQhAU1A(I - Qh)Tu 

= PhTAoQhAU1B(I - Qh)Tu. 
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Note that 
N(h) 

IPhTAov 11 = E a(0jjTAov)tyjj 112 

i,j=l 

N(h) N(h) 

= E I~(0j,IV) H j3il 
i=1 j=1 

11 |Gx(N(h), 

where 

X = {(01, V),, (02,v)E, *V*, (qN(h), V)'} 

and G is the matrix inverse to 

[(A?)-'a(0t 0k)] = [(Ao10q$,Aqk)H] 

[(qe, (I + AO-'B)0k)-] 
- I + [(B*AoU10r, qk)x]. 

Observe that for any y E CN(h) with IIyIICN(h) = 1, 
1[(B*A-l4e,4 k)H]y|CN(h) < |lB*Ao-H < 1- 

hence we obtain a bound for PhTAo that is uniform in h: 

IlPhTAol ?1 < 111ICN 1- _h1 

Since A is nondefective, ATu = u for any u C U and we find 

s IIThQhA(I -Qh)TuIIH 
E(h) = 

suCp |(I-Qh)u 

lQhAU-B(I -Qh)TullH 

ucu C l l(I - Qh)uII- 

IlQhA-1B(I -Qh) * (I - 
Qh)TuIIH 

< SUP ttlA 11I0)8 UEU ,<AI. V II - Qh)TuII- 

? 1 
HQhA1B(I - Qh)IIK. 

Now if the condition of (6.2) above holds, then 

IlQhAU1B(I - Qh) 11- < IIAU1B(I - Qh)11H = (I - Qh)B*Ao1 ll. 

Since B*A-1 is compact and Qh -* I strongly, 11(I- Qh)B*Ao-1 11 - 0 as h 0 
from which follows the conclusion of (6.2). 

Now observe that A-1Sh = Sh so that, if the assumption (6.2) holds, then 

lQhA-1B(I -Qh)I|H| = - (I-Qh)B*A-lQh llx 

fIIB*Ao-lu - w1j, = sup inf HBAluw 
UCSh WESh IIX 

fIIB*v -wll-, = sup inf H*~~ 
VESh WESh I|AovllK 

and as a consequence, E (h) < 0Q(-y(h)) as h -O+. a 
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6.2. Elliptic boundary value problems: Spectral methods. Let Q be the 
unit square in R2: [0, 1] x [0, 1] and let there be given a function b = [b, (x), b2 (x)] E 

C1 (Q) x C1 (Q) such that b = 0 on 9Q. Consider the differential operator given by 

A(x, D)u =-Au+b(x) Vu+c(x)u in Q 

with u = 0 on &Q. The regularity results of Kadlec [7], for example, show that 
Dom(A) = H2 n Ho. 

The application of a Fourier Galerkin method involves trial functions of the 
form qk(X) = sin(kl7rxi) sin(k27rx2). If lkl = ki + k2 denotes the length of the 
multi-index k, parameterize the family of subspaces as Sh = spanlklh<1{0k}, and 
assign Sh = Sl,h = S2,h. Define Ao = -A with Dom(Ao) = H2(Q) nl Ho(Q) and 
Dom(A112) = V - H1 (Q). Observe that Ao is positive definite and self-adjoint in 
'H = L2 (Q) and 

AoOqk = Akqk, 

with AO = (k2 + k2 )r2. If B denotes the closure of b(x) . V + c(x) on Co(Q) then 
the 7H-adjoint of B may be calculated as B*u = -V (b(x)u) = -b(x) Vu+ (c(x) - 

V . b(x))u and Dom(B*) D Dom(Ao). Since B* is compact relative to AO, B* has 
relative AO-bound of 0 and Theorem 6.2 (1) asserts that Ex(h) --+0. Furthermore, 
Theorem 6.2 (2) provides a mechanism for estimating the rate at which x (h) 0. 

First, notice that if {A, il} is an eigenpair for A, then 

- = (A - - c)ii-b Vii C Ho'(Q) = Dom(Al/2). 

Thus, ii z Dom(Ao82) and 

||(I-h)112 = ( )12 

Iklh>l 

S E I(A-3/2q$k, A3/2fi) 12 

Iklh>l 

(AOk) 

< (qk, 

Ao8) 
| 

Iklh>l 

6r2/ 53 /2ia) 
2 ( )lIkIh>1 

< h6 (42 ) 3/2a 11 2 

The first inequality is a consequence of k2 + k2 > 2 JkJ2 > 1/(2h2); the second is 
Bessel's inequality with respect to the orthonormal system {qk}. 

A similar argument can be organized to estimate 
0 

(h). For any v E L2(Q), 
AU1v e H2(Q) n Ho(Q) and B*Aolv E Ho(Q) c Dom(Al/2). A1/2B*AU1 is 
a closed, everywhere defined operator on L2(Q); hence A /2B*AU1 is a bounded 
operator on L2(Q). 
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Now for any v e X with llvll= 1, 

inf IIB*Ao v -wll = E I(qk, B*Aov)|2 
WESh IkIH>1 

- S l(AOl/2q$k, Ao/2B*A-1v)l2 
jkjh>I 

5 (Ak <1/2$k, A1/2B*A1lv)12 
jkjh>I 

< h (7r2) 5 I(qk, Ao/ B*Aolv)2 
jkjh> IkIh?1 

< h2 (2) IIA/2B*A-1'vH2 < Mh2 

for some M < oo. FRom this we obtain 

7(h) < sup inf BA - W%. < 0(h). 
V(E-HWESh IVIH 

Theorem 6.1 asserts that there exists an ho > 0 sufficiently small so that for each 
h < ho and all u E U, there is a Uh E Uh so that 

IUh - QhUI1|| < ch, 

whereas llUh - u1j and IU - QhU11KH will each be only of order h3 in general. 

APPENDIX: LOWER BOUNDS TO sep 

Let W1 and W2 be complex Hilbert spaces and denote with ?(W2, W1) the as- 
sociated Banach space of bounded linear transformations from W2 to W1. Suppose 
there are given two linear operators, L1 W1 -? W1, L2: W2 - W2 such that L1 is 
closed, densely defined (but not necessarily bounded) on W1 and L2 is bounded (and 
everywhere defined) in W2. Define an operator T: ?1(W2, Dom(Li)) -- L(W2, W1) 
as T(S) = L1S-SL2 and let 

def I_IT _ _ _ _II _ _ _ __V 

(A.1) sep(Li, L2) - inf |SHvv2-+vv1 

so that, in particular, if S solves T(S) = M and 0 < q < sep(LI, L2), then 

- sep(LI, L2) M1 

The following results are mild generalizations of [12] Theorem 3.1, p. 264 and [6] 
Theorem 5, p. 427. For all c> 0, we define the pseudospectral sets 

AE(L) ={z E C l(z-L)'11 > } 

As E -- 0, AE(L) shrinks to au(L). 

Lemma A.1. Suppose that u(L1) and u(L2) are disjoint. Then for every M E 
C(W2, W1), the operator equation 

(A.2) L1S-SL2 = M 

has a unique solution S that is a bounded linear transformation from W2 to 
Dom(LI) C WI. That is, T(S) is bijective. 
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(a) S has the representation 

(A.3) S=2 j (L1 z)-z M(z - L2)-1 dz, 

where F2 consists of a finite number of closed rectifiable Jordan curves enclosing all 
points of a(L2) and no points of a(L1). 

(b) Let cl, E2 > 0 be chosen so that Ael (Ll) nF2 = 0 and Ae2(L2) nF2 = 0, 

respectively. That is, AE (LI) lies entirely outsideF2 and AE2 (L2) lies entirely inside 
F2. Then 

(A.4) sep(L1,L2) > 2tr ) 
-length(F2)' 

where length(F2) is the arc length of F2. 

(c) If the numerical ranges of LI and L2, denoted respectively ro(L1) and ro(L2), 
are disjoint sets in C and /\ = dist(ro(L1), ro(L2)) > 0, then 

(A.5) sep(LI,L2) ?> /\ 

Proof. A trivial extension of Corollary 3.3 of [12] guarantees that there are a finite 
number of closed rectifiable Jordan curves enclosing all points of U(L2) and no 
points of a(L1). We orient each of the curves positively (i.e., counterclockwise) 
and refer to them collectively as F2. Observe that F2 C p(L1) n p(L2), so the 
right-hand side of (A.3) is well defined and maps W2 into Dom(L1) C W1. Since 
21t fr (Z-L2)-1 dz = I, 2 fr (z-L1)-1 dz = 0, and L(L-z)-1 = I+z(L-z)-1 
direct substitution of (A.3) into (A.2) yields 

L1S-SL2 = 2l M(z - L2)1 - (Li - z)-1M dz 
2X 2 

=M (47r (z - L2)ldz) - (2 j(L1 - z)-1 dz) M 

=M. 

Suppose N is the difference between any two solutions of (A.2). Then L1N = NL2 
and 

(z - L1)N = N(z -L2), 

N(z - L2) = (z -Li)N, 

N (2-7rf (z - tL2)ldz) = (2j7r (z-Li1 dz) N, 

N =0. 

Thus (A.3) gives the one, unique solution to (A.2). 
To show (b) note that, 

lSHvW2Wvl < 2y- /1 (Li- Z) v IIlKihMIIW2 Wlvv1I (z- L2)I /VV2 ldzl 

< lengt (F2) max 11 (Li - z)1 llW1 llMIIW2Vv1 max II (z - L2) h/v2 2ir Z (J'2Z F 

< length(F2) 1 1 
2i7r El E -II 

2 V1 

For (c), note that existence and uniqueness of S follows from (a) and the ob- 
servation that disjoint numerical ranges of L1 and L2 imply disjoint spectra for L1 
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and L2. However, we will use a different representation for S to obtain estimates. 
Define zI, Z2 E C so that zj E closure{ro(LI)}, Z2 e closure{ro(L2)}, and 

(A.6) A =1Z1-z21 = inf IZI-Z21 

Z2Em(L2) 

= inf I(x, L1x)w _ (y, L2Y)w2 1 
YEW1 (XI x)W1 (Y, Y)VV2 

Define 0 E [0, 27r) as 0 = arg(Zi - Z2). Let L1 = e - %i(L -z) and L2 = 

e -o(L2--z1) Then tr(LI) = e` (lr(Li)-z1) and 2 eo(tv(= -2)- 1). 
The goal of this translation and rotation is to insure 

Re (x, LIx)w1 > 0 

for all x E Dom(LI), and 

JRe (y, L2Y)vv2 / I 2 

for all y E W2. 
Under these circumstances, the Lumer-Phillips theorem (cf. [11], ?1.4) guaran- 

tees that -L1 and L2 each generate strongly continuous, one parameter semigroups, 
etLi and etL2, respectively. Furthermore, IetLetf lie 1 and |etL2 1w2 < et 
for all t > 0. 

Notice that S satisfies (A.2) if and only if it is also a solution to L1S -SL2 = 

e-' M and this leads to the following representation for S: 

(A.7) S = e0] etLlMetL2 dt. 

Indeed, note that with this expression for S, we have for any v E W2 

(L1S-SL2 -M) VIlW1 

= (L1S - SL2 - e%OM) VIIV1 

11 J Lie-tLlMetL2V e-tLlMetL2L2v dt-MvHw1 

= 11 j& -dt (e-tLl1MetL2v) dt -Mvllv l 

= lim (e-tLlMv - Mv) 

+ lime tLlM (etL2V-vv - im (e-tLlMetL2v) llW 

?lim 11(e-tL1Mv - MVW1 + 
|lMHIw22wl lim jjetL2 - vH|w1 t-+0 t-+0 

+ lim 11M1Vw2Vw1e tA 11V12 =0- 
t-+oo 

Immediately then, one obtains 

(A.8) IISHW2-W1 < ? lje-tL lwl IIMIIW2'W IletL2 IIW2 dt 

< j e-t dt IIMHw2'wl = (\) IMIw2'wl 
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